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a b s t r a c t

In this paper we propose a framework for an energy efficient scheduler for multiuser SC-
FDMAwith queue state information (QSI) and quality of service (QoS) constraints. Resource
allocation is formulated as a two-stage problemwhere resources are allocated in both time
and frequency. The scheduling policy is obtained in two stages for the intra- and inter-user
allocations respectively. A near optimal iterative allocation method is used for the inter-
user allocation and the intra-user allocation policy is obtained using a constrained Markov
decision process framework. Results are presented for the energy performance.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Energy efficient communication is a long-standing issue
in modern wireless communication systems. The mobile
device radio accounts for a large portion of a mobile
device’s battery life, and as such, efficient use of radio
resources can dramatically improve mobile device energy
consumption. With the increased proliferation of smaller
and faster devices, it has become essential to efficiently
utilize mobile battery resources.

General radio resource allocation problems, particu-
larly for systems such as orthogonal frequency division
multiplexing (OFDM) fall into two major classifications,
namely the rate and margin adaption (RA and MA) prob-
lems [1]. RA problems try to allocate resource to maximize
system throughput for a given power constraint, while MA
problems try tominimize transmission powerwhilemain-
taining a minimum throughput guarantee. The latter is
used for energy efficient scheduling.

In recent years, MA problems have been well-studied
for a general OFDMA transmission system [1,2]. However,
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more modern systems, such as 3GPP-LTE, utilize localized
single carrier frequency division multiple access (SC-
FDMA) at the physical layer for uplink transmissions. This
is due to the improved peak to average power ratio (PAPR)
when employing SC-FDMA. Unfortunately, contiguous
frequency block assignment in SC-FDMA eliminates direct
application of the previous MA framework described
above. Furthermore, the finite set of modulation and
coding schemes (MCSs) dramatically increases the optimal
allocation complexity.

In this paper we propose a cross-layer resource alloca-
tion scheme which minimizes the weighted average ap-
plied power per user while ensuring quality of service
(QoS) requirements are met. The contributions are pre-
sented in two parts. In the first part, the dynamic schedul-
ing policy framework originally presented in [3] is used
to allocate user data in order to minimize the overall av-
erage power expenditure for intra-user allocation while
meeting long-term QoS constraints. Secondly, we propose
a near optimal, low complexity online iterative MA allo-
cation scheme for SC-FDMA to transmit the intra-user al-
located data. This inter-user stage minimizes the overall
applied power per subframe required to transmit the user
data online subject to channel conditions.

The remainder of this paper is divided as follows.
In Section 2 we overview the details of the employed
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Fig. 1. System model: (a) each UE, (b) overall system.
uplink systemmodel including the channel and scheduling
models and in Section 3 we describe the scheduling
ideology. In Section 4 simulation results are providedwhile
in Section 5, conclusions are drawn on this work.

2. Systemmodel

The system model is shown in Fig. 1. We assume that
there are K users (denoted as UEs) within a single cell,
communicating with a single base station (denoted as an
eNB). Since we are concerned with resource allocation
within a single cell, for the purpose of this paper, it
is assumed that intercell interference is negligible. The
cell spectrum is divided into Nsub subcarriers which are
grouped into M resource blocks. Each resource block (RB)
is comprised of 12 equivalent subcarriers. Without loss of
generality we assume there is an integer number (M) of
RBs available for allocation. The system is assumed to be
operating in FDD mode.

There are Nsym symbols per subcarrier in a given sub-
frame where the exact number of subcarriers depends on
the uplink configuration. The physical uplink shared chan-
nel (PUSCH) is used for transmission of uplink data and
comprises a portion of symbols along with other control
channels. For the purpose of this paper, it is assumed that
the PUSCH occupies Nsym–Nctrl symbols per subcarrier, per
subframe where Nctrl is the number of symbols used for all
other physical channels and signalling.

The time scheduling horizon is divided into small sub-
frames consisting of two LTE time slots and has a duration
1 ms. An example layout of the time scheduling horizon
is shown in Fig. 2. During each subframe, where m is to
denote the mth subframe, users can transmit up to Ti(m)
bits of data as determined by the eNB. The long-term aver-
age service rate experienced by a user is µi SDUs per sec-
ond. Each UE also has a power-allocation priority weight
αi which can be used to denote the relative importance of
user in terms of minimizing their individual power con-
sumption.

Each UE receives all uplink traffic from upper layers
of their protocol stack destined for transmission to the
eNB. Each UE’s traffic has associated QoS parameters
{Di, Li, λi, Bi, Pdrop,i} which denotes the maximum tolera-
ble average delay, service data unit (SDU) length, average
arrival rate, buffer size at the radio link control (RLC) layer
andmaximum buffer dropping rate of SDU respectively for
that user. Each streammay represent a broad service class
(such as voice over IP or video) or a particular application-
layer stream being used at the time. Each incoming stream
Table 1
Frequently used notation.

Quantity Symbol

Number of UEs K
Number of RBs in frequency M
UE index i
Subchannel index k
Subframe number m
Target block error rate BLERtgt
Set of allocated subchannels to UE i Ni
Transport block header size Lhdr
Transport block size in subframem Ti(m)

Average delay target for UE i Di
SDU length for UE i Li
Average SDU arrival rate for UE i λ̄i
SDU buffer size for UE i Bi
Target SDU dropping rate for UE i Pdrop,i
Maximum number of transmitted SDUs per UE i in a
subframe

Zi

Allocated SDUs in subframem for UE i ci(m)

SDU rate state-space for UE i Ci
Buffer level of UE i at the beginning of subframem ui(m)

Arrivals to buffer of UE i during subframe m Ai(m)

Scheduling policy Ω

Steady-state policy distribution function for UE i θi(ci, ui|Ω)

Steady-state action probability πi(ci|Ω)

Reference SNR γ0
Average SNR in subchannel k for UE i γi,k
Effective SNR for a set of subchannels for UE i γi,eff

is stored in a finite-length first-in, first-out (FIFO) buffer
where incoming SDUs are dropped when the buffer is full.
There is one traffic stream for each UE. For clarity for the
reader, Table 1 summarizes the frequently used notation
in this paper.

2.1. Assumptions

The following assumptions are made for the remainder
of this paper.

• The CSI matrix corresponding to the channel between
each UE and the eNB over all RBs is available at the eNB
error free.

• The eNB feedback channel informsUEs in advance of the
resource blocks and quantity of data for transmission
for a user during any uplink subframe.

• The eNB has knowledge about buffer occupancy levels
and QoS parameters of each UE.

Similar assumptions regarding the CSI and feedback chan-
nel are made in many related cross-layer works includ-
ing [4,5].
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Fig. 2. Time scheduling horizon.
2.2. Finite transport block sizes

In most packet based transmission systems, due to
physical limitations, users can only service a finite number
of SDUs from the queue during a small period of time.1
Assuming there is no SDU segmentation at the physical
layer before transmission, we can denote Zi as the
maximumnumber of SDUs that can be serviced during any
time subframe m by UE i where ci ∈ Ci = {0, 1, . . . , Zi}
and ci is the number of SDUs serviced during any subframe.
As a result, the eligible sizes of each UE’s transport block
are also a finite set given as Ti = {0, Li + Lhdr, 2Li +

Lhdr, . . . , ZiLi + Lhdr} where Li is the SDU length in bits and
Lhdr is the header size.2 During each subframe, the eNB
allocates to user i an uplink slot of Ti(m) ∈ Ti bits.

2.3. Channel state information (CSI)

Channel state information is assumed available at the
eNB for the next subframe. We assume this information
is available error free. The channel is modelled as block
fading where the channel is static for the duration of a
subframe and independent from subframe to subframe.
The channel experienced from UE to UE is assumed
independent. For now, the channel transfer function for
each RB is also assumed to be independent of adjacent RBs
and each channel follows the Rayleigh SNR distribution
given as

p(γ ) =
1
γ0

exp


−
γ

γ0


(1)

where γi,k(m) will be used to denote the uplink channel of
user i over RB k in subframem.

1 Such a rationale was previously described in [3].
2 No header is required if a UE user does not transmit any SDUs during

a given subframe.
2.4. Queue evolution

From slotm to slotm+1 the evolution of the RLC queue
of each user evolves according to

ui(m + 1) = min{Bi,max{0, ui(m) − ci(m)} + Ai(m)} (2)

where ui(m) is the number of SDUs in queue i at the
beginning of subframe m, Ai(m) is the number of SDUs
arriving during subframe m to the queue and ci(m) is the
number of SDUs taken from queue i during subframem.

3. Resource allocation framework

The proposed resource allocation algorithm is divided
into intra-user and inter-user allocation stages. The intra-
user stage controls the number of SDUs allocated per
subframe tomeet the individual loss, delay and throughput
requirements of all each users’ stream while minimizing
the average weighted energy expenditure, while the inter-
user stage allocates channel resources to individual UEs
to minimize the per subframe weighted power allocation
subject to the conditions of the wireless channel.

3.1. Intra-user allocation

The intra-user allocation operates as follows and is for-
mulated as a constrained Markov decision process (MDP).
The intra-user allocation chooses the number of SDUs
{ci(m)|0 ≤ ci(m) ≤ Zi} for each UE i during subframe m
and where Zi denotes the maximum number of SDUs that
can be transmitted by UE i during any subframe. The sys-
tem state of UE i is denoted by its buffer level and the ac-
tion space of the constrained MDP describes the number
of SDUs that can be transmitted during a subframe (or set
of values for ci) subject to the computed randomized pol-
icy. The set of all feasible action spaces across all UEs is C
(known a priori) and as described in Section 2.2.

Let θi(ci, ui|�) be a steady-state distribution function
that exists for a particular policy � where ui is the buffer
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occupancy level of UE i. The solution to the allocation
problem for any scheduling policy � is a random policy
described by this distribution function θi(ci, ui|�) which
denotes the probability of choosing the action ci as the
number SDUs for transmission given that UE i is in state ui.
The aforementioned policy is derived for all UEs in a similar
fashion to [3]. The goal of the optimization formulation for
intra-user scheduling is to find θi(ci, ui|�) for all ci, ui, as
well as i that minimizes the average applied transmission
power. The resultant policy is coupled by � which defines
the scheduling actions for each queue i and each queue
state ui ∈ Ui. Application of this policy in each subframe
m determines the number Ti(m) in bits to be transmitted
for UE i (where Ti(m) = Lici(m) + Lhdr for ci(m) > 0 or
Ti(m) = 0 when ci(m) = 0), ci(m) is ci chosen randomly
at time m with probability defined by θi(ci, ui|�) and Lhdr
is the size of the subframe header. Ti(m) for all i is then
allocated subject to the inter-user allocation algorithm. As
the cost function of the constrainedMDP problem relies on
knowledge about the inter-user allocation algorithm, the
estimated average applied power per action is computed
as discussed in Section 3.3.

The intra-user allocation constraints are on throughput
and delay. These are measured as follows.

3.1.1. Station throughput
Throughput is measured as the amount of goodput over

the channel. Assuming each transmission experiences a
block error rate of BLERtgt the average throughput is given
by3

Throughput = Em[Ti(m)](1 − BLERtgt). (3)
Further, we note that dropping probability of a given

queue is related to the service rate as

Pdrop,i = 1 −
Em[Ti(m)]

λi
. (4)

3.1.2. SDU delay
The SDUdelay can be found fromLittle’s Theorem.Here,

the average queueing delay can be given as

Di =
qi

λq,iTf
(5)

where qi is the average queue size and λq,i is the average
enqueued arrival rate for queue i. By designwe can express
qi using the steady-state distribution θi(ci, ui|�) as:

qi =


ui∈Ui

ui


ci∈Ci

θi(ci, ui|�) (6)

and since λq,i is also equal to the average service rate in
steady-state, it can be expressed as

λq,i =


ui∈Ui


ci∈Ci

min(ci, ui)θi(ci, ui|�). (7)

We also note that λq,i is related to the throughput as

Em[Ti(m)] = λq,iLi. (8)

3 We note in the above equation, the number of SDUs does not appear.
This is important to note as in general SDUs encoded at the physical
layer are sent as one block. If the block is erroneous, all SDUs within the
subframe are erroneous.
3.1.3. Per-queue transition probability
The transition of each queue is solely based on the ar-

rivals and departures from that queue. For Poisson arrivals
with average rate λi in SDUs per subframe, the transition
probability is given as

pciui;u′
i

=


Pr


Ai(m) = u′

i − [ui − min(ui, ci)]

, u′

i < Bi
∞

j=Bi−[ui−min(ui,ci)]

Pr[Ai(m) = j], u′

i = Bi
(9)

where

Pr[Ai(m) = k] =

λi
k
exp(−λi)

k!
, if k ≥ 0

0, otherwise
(10)

for a given average arrival rate λi, buffer size Bi and all eli-
gible SDU service rates ci.

3.1.4. Per user objective function
The transmission cost is found for each c ∈ C. Let P (c)

be the joint cost of choosing action c (action c1, c2, . . . , cK
for each UE). As with [3], the marginal cost for each queue
can be obtained usingP (c) combinedwith the steady state
distribution as in Eq. (23) of [3] to obtain the marginal cost
function used in the intra-user constrained optimization.

P (c) is dependent on the channel. Moreover, it is
difficult to obtain a closed form expression on P (c) for
all c , particularly since this is dependent on the average
performance of the inter-user allocation stage. Themethod
used to obtain P (c) is discussed in Section 3.3. Once this is
determined, the cost function is obtained as follows.

First, the averagemarginal cost for taking an action c1 =

x in user 1 for example can be given as

Υ1,x =


c2∈C2

· · ·


cK∈CK

P(x, c2, . . . , cK )

· π2(c2|�) × · · · × πK (cK |�) (11)

where there are i−1 summations. Similar expressions can
be found for all actions ci ∈ Ci and found for all users
k = 1, . . . , K and where

πi(x|�) =


ui∈Ui

θ(x, ui|�), x ∈ Ci (12)

P(c1, c2, . . . , cK ) denotes the average weighted power
allocated to transmit {c1, c2, . . . , cK } SDUs from each UE i.
In compact notationwedenote thisP (c)where each c ∈ C
corresponds to a set {c1, c2, . . . , cK } for all users.

By design, the steady-state distribution θi(ci, ui|�)
must also satisfy the following balance property
u′
i∈Ui


c′i∈Ci

θ(c ′

i , u
′

i|�)p
c′i
u′
i;ui

=


ci∈Ci

θ(ci, ui|�), ∀ui. (13)

3.1.5. Iterative policy solver
The above steady-state action probabilities are coupled

through the policy �. The value P(c) is the total power
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associated with taking actions c1 through cK in each UE
(or one for each state c ∈ C) found earlier. Here we
need to highlight that the above expression contains the
steady-state probability of choosing an action for each
user, the result of which implies that it is not possible to
directly decouple and consider each user independently.
As a result, we employ the per-user iterative policy solver
developed in [3]. The solver operates as follows.

Firstly, each user policy vector is initialized to

πi(x|�(0)) =
1

Zi + 1
, ∀x, i (14)

where �(n) denotes the policy computed at iteration n. Let
K denote the set of users where K = {1, 2, . . . , K} and n
denote the iteration number where initially n = 1. At each
iteration, i∗ = (n mod K) + 1 where n is incremented for
each iteration. For each iterationwe solve forπi∗(x|�(n)) as
follows.

As in [3], the constrainedMDPproblemat each iteration
is solved using convex linear programming (LP) techniques
formulated as argminxcTx, subject to Ax ≤ b,Aeqx =

beq, x ≥ 0 where A and Aeq are matrices and x, b, beq and
c are column vectors. The vector x is the solution to the
optimization problem. In our problem, the elements are
given as

x = [θi∗(Ci∗ , 0|�(n)), . . . , θi∗(Ci∗ , Bi∗ |�
(n))]T (15)

with each θi∗(Ci∗ , ui∗ |�
(n)) being a row vector with entries

for each ci∗ = 0, 1, . . . , Zi∗ .
The objective function is of the form cTx. The vector c

is comprised of the total power cost for taking an action.
Each entry of c corresponds to the entry in xwith the value
of entries in c given by Υi∗,ci∗ in (11).

c = [Υi∗,1, . . . , Υi∗,Zi∗+1  
1

,

2···Bi∗. . . , Υi∗,1, . . . , Υi∗,Zi∗+1  
Bi∗+1

]. (16)

The equality constraints are comprised of the balance
equations and the causality constraint (total probability
space). In matrix form, the balance equations can be ex-
pressed as P × x = 80 × x where P is given by

P =


pCi∗
0;0 · · · · · · pCi∗

Bi∗ ;0
... pCi∗

1;1 · · ·
...

...
...

. . .
...

pCi∗
0;Bi∗

· · · · · · pCi∗
Bi∗ ;Bi∗

 (17)

with pCi∗
q;q′ as a 1 × (Zi∗ + 1) row vector with entries

pCi∗
q;q′ = [p1q;q′ , . . . , p

Zi∗+1
q;q′ ] (18)

and the quantity 80 is given as the Bi∗ + 1 row matrix

80 =


11×(Zi∗+1) 0 · · · 0

0 11×(Zi∗+1) · · · 0
...

...
. . .

...
0 0 · · · 11×(Zi∗+1)

 . (19)
Combining the above with the causality constraint on
the total probability space we have our overall equality
constraints given as

Aeq =


P − 80

11×((Zi∗+1)(Bi∗+1))


(20)

beq =

01×(Bi∗+1) 1

T
. (21)

The inequality constraints are used to describe the
throughput and delay constraints. These constraints are
given in two parts as

A =


w1
w2


b =


z1
z2


(22)

where w1 is given as

w1 = −[χi∗:n(Ci∗ , 0), . . . ,χi∗:n(Ci∗ , Bi∗)] (23)

where χi∗:n(Ci∗ , ui∗) is a row vector with entries χi∗:n
(ci∗ , ui∗) for all ci∗ ∈ Ci∗ and z1 is given as

z1 = −λ̄i∗(1 − Pdrop,i∗)Tf . (24)

Finally, w2 is given as

w2 = Q × 80 − Di∗U z2 = 0 (25)

where Q = [0, 1, . . . , Bi∗ ] and U is given in (26).

U = [min(0, 0),min(1, 0), . . . ,min(Zi∗ , 0),
min(0, 1), . . . ,min(Zi∗ , Bi∗)] = −w1. (26)

The total average weighted power in the system at itera-
tion n is given as

P (n)
=


c1∈C1

· · ·


cK∈CK

P(c1, c2, . . . , cK )

· π1(c1|�(n)) × · · · × πK (cK |�(n)). (27)

The process continues iteratively until reaching one of
the following stopping conditions

(i) |P (n−k)
− P (n−k−1)

| < ϵ,

k = 0, . . . , K − 1, n ≥ K
(ii) n > MAXiter

whereMAXiter is the presetmaximumnumber of iterations
and ϵ is a small positive number.

3.2. Inter-user allocation

The inter-user allocation occurs as follows. During each
subframe, each of the K users transmits a single transport
block of Ti(m) bits. It is assumed that eligible transport
block sizes are an integer number of SDUs plus a header
(i.e., no SDU segmentation is required by the RLC, ci are
integer values as discussed above).

We previously noted the uplink physical layer employs
SC-FDMA. Resources during any given subframe must
therefore be allocated contiguously in frequency, and only
a single contiguous transport block can be allocated per
subframe.

This allocation is done employing an iterative, near-
optimal allocation technique using Algorithm 1. This algo-
rithm iteratively allocates resources to users to maximize
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Algorithm 1 Iterative Power Efficient Resource Allocation
1: N = {1, 2, . . . ,M}

2: Ni = ∅, ∀i ∈ K
3: K(a)

= K
4: N

(f )
i = N , ∀i ∈ K

5: while |N | > |K(a)
| do

6: for i ∈ K do
7: if Ni ≠ ∅ then
8: for j ∈ N

(f )
i ∩ N do

9: ∆pi,j = αi(P(Ni, Ti, γ) − P(Ni ∪ j, Ti, γ))
10: end for
11: else
12: for N do
13: pi,j = αiP(Ni, Ti, γ)
14: end for
15: ∆pi,j = min({pi,j, j ∈ N \ argmin

j∗∈N

(pi,j∗)})

− min({pi,j, ∀j ∈ N })
16: end if
17: end for
18: if max(∆pi,j) < 0 then
19: break
20: end if
21: (i∗, j∗) = argmax

i,j
∆pi,j

22: K(a)
= K(a)

\ i∗
23: Ni∗ = Ni∗ ∪ j∗

24: N
(f )
i∗ = {min(Ni∗) − 1,max(Ni∗) + 1} ∩ N

25: N = N \ j∗
26: end while
27: if |K(a)

| ≠ ∅ then
28: for i ∈ K(a) do
29: for j ∈ N do
30: pi,j = αiP(Ni, Ti, γ)
31: end for
32: end for
33: while |K(a)

| ≠ ∅ do
34: (i∗, j∗) = argmin

i∈K(a),j∈N

pi,j

35: K(a)
= K(a)

\ i∗
36: Ni∗ = j∗
37: N = N \ j∗
38: end while
39: end if

the power level gain at each iteration similar to the
block MA allocation in [6], which was based on the RA
allocation algorithm in [7]. In the Appendix we show that
this method performs near-optimal MA subcarrier and
power allocation when the number of users scheduled per
subframe is less than half the number of the RBs (i.e., 2K ≤

M). For now,we assume that this is the case. For a given set
of intra-user allocations {Ti(m), ∀i}, the algorithmallocates
power and RBs to each user. The selected power level is
given as the ratio of the required SNR to the measured SNR
for a given target error rate. We utilize the block outage
probability from [8] to model the block error rate (BLER)
of coded transmissions.4 This is a function of the number

4 While here we utilize BLOP to model the error rate of coded
transmissions, extensions are trivial given measurements of BLER
of resource blocks (total number of symbols) and the data
rate. Given a target BLER, a data rate Ti (measured in bits
per subframe) and a set of resource blocksNi, we know that

BLER(γ
(r)
i,eff, Ni, Ti) ≈ Q


log(1 + γ

(r)
i,eff) −

log(2)Ti
η(Ni)

2
η(Ni)

γ
(r)
i,eff

1+γ
(r)
i,eff

 (28)

where γ
(r)
i,eff is the SNR level required for a given BLER.

In order to use the above for margin adaptive resource
allocation, we must solve for γ

(r)
i,eff as a function of Ti

and Ni. From this, one can obtain the required allocation
power from the SNR gap between the measured effective
SNR and the required SNR. Due to the monotonicity
of the Q-function arguments, the above can be solved
efficiently using bisection techniques. Alternatively, a
more computationally efficient method is to obtain a least
squares approximation to the above as a function of data
rate, target BLER and the number of RBs allocated (similar
to the approach in [4]). We found the following fitting
function closely approximates the SNR as a function of data
rate

γ
(r)
i,eff ≈ ax exp(bxTi) − γ0,x (29)

where x = |Ni| and validations of this approximation is
given in Section 4.1.

Using the above, the required applied power is given as

P(Ni, Ti, γ) =
γ

(r)
i,eff

γ
(m)
i,eff

=
a|Ni| exp(b|Ni|Ti) − γ0,|Ni|

1
|Ni|2


k∈Ni

γi,k
(30)

where Ni is the set of RBs that we allocate to a UE and Ti
is the number of bits for transmission. Parameters ax, bx,
and γ0,x are given from the least-squares approximation
derived as follows and depend on the target block error
rate of the channel (BLERtgt).

3.3. Determining power applied per state

Determination of P (c) for intra-user allocation in Sec-
tion 3.1 requires knowledge of the expected power alloca-
tion of the inter-user allocation in Section 3.2.

For any state vector c , the bitrate Ti is easily obtained
as Ti = ciLi + Lhdr for ci > 0 or Ti = 0 for c =

0 in state c (recalling c is the joint state of ci for all i).
From this one can obtain Ti, ∀i for use in Algorithm 1
and find the weighted transmission power using (30)
for a given channel realization. A measurement of the
average weighted power of state c (i.e., P (c)) can be
obtained by averaging the weighted transmission power
over all realizations of the channel matrix and over all
possible system states c . Since we assume the channel is
continuous, and the number of resource blocks is large, it
is difficult to do this for all realizations, we can however

performance obtained via proper training and calibration or in cases
where analytical expressions are obtainable.
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Fig. 3. Histogram of power applied per iteration.
obtain P (c) by averaging over a finite number of random
realizations for each c.

Consider the following example where there are five
UEs, and 24 RBs and each user is transmitting 400 bits
(for this state c , i.e., T1 = T2 = · · · = T5) over
one subframe. In Fig. 3, we see a histogram of the actual
applied power per iteration (instantaneous P (c) over
10000 iterations) for this state c (where RBs and power are
allocated at each iteration based on the channel CSI). What
we observe is that this number of random realizations
provides a smooth distribution of the average applied
power implying a sufficient number of samples. For any
c , the average applied power (P (c)) is measured as the
mean instantaneous value (i.e., 0.1879 or −7.26 dB in
this example). Similar values can be obtained for all other
c ∈ C.

3.4. System complexity

In general all system parameters including the intra-
user policy and average applied power per state can be
measured and calculated in advance and stored inmemory.
The proposed framework is functional for a small to
moderate number of instantaneous users as the size of C
is given as

|C| =

K
i=1

(Zi + 1). (31)

For the case above, where we assume Zi = 4, we
see that |C| = 5(4+1)

= 3125. While we observe that
the number of states increases exponentially, it is still
considerably more efficient than consideration of the joint
buffer occupancy states. For example, if each user had a
buffer size of up to 25 SDUs, the resulting space would be
5(25+1)

= 1.49 × 1018.

4. Results

Results are presented with universal parameters sum-
marized in Table 2. Details are provided for the least-
squares approximation aswell as the applied power versus
various parameters.
Table 2
Simulation parameters.

Parameter Value

γ0 10 dB
Nsym 14
Nctrl 3
BLERtgt 10%
Number of subframes 10000
Tf 1 ms
Number of RBs (M) 24
Number of UEs (K) 2
ϵ 10−7

Lhdr 30 bits
αi 1 ∀i
Pdrop,i 0.1% ∀i
Bi 25 SDUs ∀i
λ̄i 1.5 SDUs per subframe, ∀i
Di 4 subframes ∀i
Zi 4∀i
Ti 150 + 50i, ∀i
MAXiter 10 K

4.1. Least-squares applied power approximation

The justification behind use of the pre-described fit
function is shown in Fig. 4. Here we see in this comparison
two, four, and eight RBs with BLERtgt = 10%. The least-
squares approximation is shown to hold tightly to the
actual BLER function; providing for a more tractable
computation of the required SNR level and justifying its
use as a suitable alternative in computation of the required
SNR.

4.2. Average applied power

Results for the average applied power are shown in
Fig. 5. From these we observe several trends. Firstly, we
observe a very low impact on the delay beyond two
subframes in terms of percentage difference. This finding
is consistent with the results found in [3]. The impact on
SDU size is significantly larger in terms of average power
applied. We also observe the impact on the number of
users in Fig. 5(b). Here as expected the system expends
additional power to accommodate the increase in users.
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Fig. 4. Least-squares approximation accuracy.
(a) Versus target average delay and SDU size. (b) Versus target average delay and number of UEs.

Fig. 5. Average applied power per subframe versus system parameters.
In this graph the computed and simulated results are
shown (computed is given as the solution to the optimal
policy, simulated obtained through implementation of the
computed policy). The simulated results closely follow the
expected scheduling policy performance.

5. Conclusion

In this paper we designed and evaluated the design
of an energy efficient scheduler for multiuser SC-FDMA
uplink. By exploiting part of our previously designed iter-
ative scheduling technique, with a near optimal iterative
resource allocationmechanism, a low-complexity schedul-
ing policy was obtained. The proposed design was com-
pared versus various parameters.

Our future work will look to extend these results in
several ways. Firstly, after examining Fig. 3 we observe
that the applied power per state appears at a glance to
follow certain well-known distribution functions. In order
to reduce the dependency on obtaining an estimate of
the applied average power as discussed in Section 3.3, we
look to better characterize the inter-user channel. In this
way, it may be possible to obtain an exact or approximate
analytical expression for the average expected power to
eliminate this step. We note however that this is highly
dependent on the underlying channel model. The second
extension will focus on combining multiple classes of
traffic into a single UE at the intra-user allocation stage.
In this way, UEs will multiplex multiple classes of QoS
constrained traffic (such as a simultaneous voice and
data stream) over the shared uplink channel while still
minimizing energy expenditure.

Appendix. Optimal gap

In order to address the performance of the iterative
allocation algorithmdescribed in Algorithm1,we compare
its performance with the optimal allocation. The optimal
optimizations formulation is a traditional margin adaptive
power and subcarrier allocation with subcarrier contiguity
constraints in frequency and is formulated as follows.
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Fig. 6. Optimal allocation gap.
The formulation can be done using a similar approach
as that used in [7], howevermodified to operate for theMA
resource allocation problem. In this fashion, the contiguity
constraints are exploited in a manner that reduces the
binary search space.

The optimization problem is solved at each subframem.
For brevity of notation, the index m is dropped however
all quantities are assumed to be specific to subframe m.
The problem can be expressed as a general set-packing
problem and formulated using binary programming as

min
x

cTx (32)

s.t. Ax ≤ 1M , Aeqx = 1K , xj ∈ {0, 1}, ∀j ∈ x

where c is the real-valued vector containing the weighted
power of choosing a given allocation, x is the vector of allo-
cation selections, Aeq is a binary equality constraint matrix
of K rows and A is a binary inequality constraint matrix of
M rows. Each non-zero entry of the solution vector x cor-
responds to selecting the corresponding column allocation
in A.

The matrix A describes the set of potential RB alloca-
tions for all users. It is comprised of individual allocations
given as

A = [A1, . . . ,AK ] (33)

where Ai is a matrix containing the set of feasible allo-
cations for UE i. Each column of Ai corresponds to a fea-
sible allocation while each row corresponds to a specific
resource. Each entry in Ai can take a value of {0, 1}. An en-
try of 1 if the particular resource is required by a UE for that
allocation and 0 otherwise.

The set of possible allocations is determined as follows
for each UE. During any subframe, a UE with data for
transmission will utilize between one and M RBs in
frequency. Any unique possible allocation is given as a
column entry in Ai. For example in the case whereM = 4:

Ai =

1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 1 1 1 1 1
0 0 0 1 0 0 1 0 1 1

 . (34)
The effectiveMCS scheme is a function of the number of
RBs and Ti. For eachpossible contiguous block of RBs of size,
the power level needed to maintain BLERtgt for all possible
allocations of contiguous resource blocks is found using
(30). For each such possible contiguous block above given
by columns in Ai, the corresponding transmission power is
given in the corresponding entry of c.

The equality matrix Aeq is simply a matrix of K rows
constraining the number of selected allocations such that
each UE is only allotted one allocation selection from their
matrix Ai. This is given as

Aeq =

1T
C1 · · · 0T

CK
...

. . .
...

0T
C1 · · · 1T

CK

 (35)

where Ci is the number of columns in Ai and 1x and 0x are
column vectors of length x.

The objective function vector cT = [cT1, . . . , c
T
K ] is sim-

ply the cost of choosing the corresponding allocation for
each ci. By the design of the problem, one can see the cost
is simply theweighted power of choosing an allocation. In-
dividual entries of ci can be then be given as

ci:ji = αiP(Ni(ji), Ti), ji = 1, 2, . . . , Ci (36)

where the function Pi(·) is given in (30), αi is the prior-
ity weight of UE i and where Ni(ji) = {x|ai:x,ji = 1, x =

1, 2, . . . ,M}. The quantity ai:x,ji denotes the {x, ji} entry in
Ai and ji is the jith column of Ai.

In Figs. 6 and 7 we show the result of the power allo-
cation gap as a function of number of users and resource
blocks. Here we set all users to have a required data rate
of 400 bits per subframe with the same relative priority
(αi = 1, ∀i). Fig. 7 is zoomed into a region of interest
of Fig. 6. What we observe is that as long as the number
of resource blocks is at least twice the number of users,
the gap between the optimal and suboptimal allocation
schemes is less than 10%. While this results in a relatively
small increase in power allocated, there is a relatively large
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Fig. 7. Optimal allocation gap—zoom.
reduction in computational complexity, and the latter
method can be easily implemented in real time.
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